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ABSTRACT 

A model for diffractive dissociation of hadrons into low-mass states 

is proposed. It is based on a peripheral mechanism with absorption. The 

absorption effects lead to an important modification of the amplitude by 

introducing an extra dependence upon momentum transfer and strong slope- 

mass correlation. A diffractive minimum is predicted for small values of 

the mass of the produced system. The connection with the crossover effects 

in diffractive dissociation is discussed. The nucleon dissociation is con- 

sidered in detail. 



I. INTRODUCTION 

Diffractive dissociation of hadrons into low-mass multiparticle states 

has been studied for many years bnt still remains one of the most enigmatic 

phenomena in hadron physics. These processes while inelastic have most 

of the features of elastic scattering. This amazing similarity leads to the 

conclusion that the basic dynamics for elastic and diffractive dissociation 

reactions are the same. The general approach to understanding of this 

phenomenon was outlined in the 195O’si and suggests that similar to optics, 

diffractive elastic and inelastic scattering is a result of absorption of different 

components of incoming waves. A hadron is considered as a set of virtual 

states which can be transformed into real particles by elastic scattering 

without the change of internal quantum numbers. A classic example is the 

regeneration of KS from KL through the different absorption of K and 17 in 

hadronic matter. Another example is the “vector meson dominant” inter- 

action of photons with hadrons. 

Unfortunately up to now there is no explicit dynamical realization of 

this general idea which can explain in a completely satisfactory way all 

detailed features of diffractive dissociation. One of the most popular models 

is the double-peripheral model of Drell-Hiida-Deck (DHD) type’ which 

explains many important features of diffractive dissociation. However, 

recently some serious objections against this model were put forward which 

led to scepticism with its validity. 

In this paper we show that the remedy for this model can be found by 

taking into account the absorption. The possibility of building upon and 
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refining this model seems to us very important, especially since it is nearly 

the only model which gives explicit predictions for the dependence on all 

kinematical variables and involves a minimal number of free parameters. 

In Section II the most important features of diffractive dissociation are 

discussed with emphasis on nucleon dissociation which we chose as an ex- 

plicit example in this paper. 

Starting from the Good and Walker approachi we consider in Section III 

the derivation of traditional DHD-type model for processes NN-trNN, rrAN, 

and oNN (where o is an effective two-pion system). With some approximations 

we obtained a simple analytic expression for d’crldt dM: which can be used 

in the missing mass analysis. 

Derivation of the DHD-type amplitude with absorption is done in Section 

IV. We show that the absorptive corrections introduce into the invariant 

matrix element an extra dependence on momentum transfer and slope-mass 

correlation. 

These features were found necessary for agreement with the experiment. 

The absorbed amplitude becomes more peripheral and a diffractive minimum 

arises for production of low-mass systems. The effect of the absorption on 

the crossover in diffractive dissociation is also discussed. In this paper we 

present only a qualitative discussion of the model. Detailed comparison with 

data will be given elsewhere. 
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II. LOW-MASS NONRESONANT ENHANCEMENTS 
IN DIFFRACTIVE DISSOCIATION 

One of the most interesting problems in diffractive dissociation is 

connected with the properties of the produced system. Missing mass distri- 

butions in diffractive dissociation of nucleons and ‘in and K mesons exhibit 

strong enhancements in the low-mass region. Such peaks in mass spectra 

are usually interpreted as resonances. However, a detailed comparison with 

the phase shift analysis shows that not all of these peaks have counterparts 

in resonance spectrum found in formation experiments. Moreover, as has 

been shown recently by careful analysis of dissociation = - 37r3 in the Ai-, 

AZ-’ and A3-peak region, none of the partial waves except Jp = 2+ (A2) has 

resonance behavior, i. e., Ai and A3 enhancements are not resonances. 

Similar results have been found also for Kvr system. (For review see 

Ref. 3a. ) The other important fact is that most peaks produced in diffraction 

dissociation processes are not produced by any other reaction process (for 

example, in charge exchange). These facts mean that in addition to peaks 

corresponding to the excitation of “normal” resonances one should admit the 

existence of nonresonant enhancements. 
4 

Thus, we are faced with an ex- 

tremely interesting question: what is the mechanism causing a “resonance- 

like” enhancement for the nonresonant amplitude at certain mass values ? 

And here the experiment provides us with the very important information 

which, probably, is a key to the understanding of diffraction dissociation. It 

tells us that: 

1. a hadron preferentially dissociates into two particles, one 
of which is always a pion (X = Xi + r)5 
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2) the mass distribution peaks usually near M 
Xl 

+ I, threshold 

4) there is a reciprocal relationship between the slope of the 
differential cross section and the mass M of the produc;d 
system. Typically the slope parameter is” - 1-2 (GeV/c) 
near threshold and decreases to 4-5 (GeV/c) at larger Mx 

4) in contrast to elastic scattering the diffractive system does 
.not conserve s-channel helicity. 

These properties, if understood, would lead to insight into the dynamics 

of diffractive dissociation. 

The experimental data on mass spectra in nucleon excitation N - N* 

are somewhat contradictory. All measurements are agreed that the most 

pronounced feature of mass spectra at small t is a bump at Mx - 1.4 GeV. 

But in some experiments this bump is found to be structureless 
6a 

whereas 

in anotherbb some narrow peaks at Mx2 -1.5’and 1.7 GeV have been found. 

Similar structure has been recently found at high energies. 7 

Sometimes there is a tendency to associate the bump at 1.4 GeV with 

the Roper resonance Pii found in the phrase analysis of HN scattering at 

M = 1470 MeV. But this interpretation meets a number of difficulties. 

(i) The contribution of the Roper resonance is much smaller than 

the contribution of N* (iSOd) and N* (1688) resonances and is not seen in total 

TN cross section with I = i/2, but only in detailed partial wave analysis. 

But in diffractive excitation the I.4GeV bump is a dominant feature at low 

mass and small t. 

(ii) There is a significant shift of the peak position in production and 

formation experiments. In N - rrN and N + rrnN channels the peaks are 

observed at different masses (1250 and 1450 MeV) in contrast to the “normal” 

resonance decay (see, however, 9. 



-5- 

(iii) The width of the peak is much larger in production than in forma- 

(iv) There is no reasonable explanation in the resonance model for a 

fast decrease of the slope parameter from 15-20 (GeV/c) 
-2 

at Mx = 
YN+p 

threshold to 5-7 at Mx -2 GeV. 

Another interpretation of the bump is connected with a DHD-type multi- 

peripheral mechanism corresponding to the diagram shown in Fig. 1. This 

model successfully explains many characteristic features of diffractive 

dissociation: 

a) Weak s-dependence is a result of the approximate constancy of the 

flN scattering cross section at high energies. 

b) Approximately equal cross sections for the dissociation of a particle 

and its antiparticle. 

c) Approximate factorization. 

d) Predominantly vacuum quantum number exchange. 

e’) Preference for dissociation into Xi + TI system. 

In this model some important features of diffractive dissociation arise 

from kinematics: 

(i) The low-mass enhancement results from a phase-space factor 

which leads to the vanishing of the amplitude at the threshold and from a 

decreasing of the matrix element when going to larger Mx due to peripherality 

and kinematics. 9 

(ii) Strong Mx-dependence of the slope parameter is a consequence 

of the double peripherality of Fig. 1: T -exp (Bt + Biti). At the threshold 
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t and tl are linearly related and consequent1y.T -exp [(B + Bi) t]. As M, 

becomes larger the dependence of tl on t becomes weaker leading to weaker 

t-dependence of T. 

(iii) The difference in the peak positions for TN and rrzN channels is 

naturally explained in terms of the different masses of the final states. 

The DHD-peripheral model in various modifications was successfully 

applied in analysis of n-, K-, and N-diffractive dissociation in different 

regions of the kinematical variables. However, recently, some objections 

have been found against such interpretations of diffraction bumps. 

First, in a detailed analysis of the reaction pp - pna+ as a function of 

all four variables it was pointed out 10 that pure kinematics is not sufficient 

to reproduce the whole Mx-dependence of slope parameter and that the data 

still show some extra Mx-dependence of the slope which must be explicitly 

present in the invariant matrix element. 

Secondly, for only one of the two crossovers observed in diffraction 

dissociation: T’ (n-) -. AI’ (AI-) the DHD model gives the right prediction, 

whereas for the other K” (??O) + Q” (Go) it predicts a ratio of cross sections 

. 11 
which is opposite to the data. The fact that the relative normalization of the 

K” and ii0 differential cross section are taken care of automatically through 

the natural composition of the KLo makes this result’very reliable. 

These difficulties 
12 

are serious problems for the DHD-type model. We 

shall show that the possible way out is connected with absorption. The 

nucleon dissociation will be considered as an explicit example. 
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111. DOUBLE PERIPHERAL MODEL 

1 
We shall start from the Good and Walker model of diffractive dissociation. 

According to this model, the incoming particle at large momentum in the tar - 

get rest frame can be viewed as a fluctuating object with various fluctuations 

permitted by the quantum numbers : 

l’in 
> =Ca. 

m, kllhk,. 

The components of the incoming wave 1 Xk> interact with target particle due to 

the elastic diffractive scattering caused by absorption, so that after scattering 

!Afin’ = Cain, k”k!Xk>’ 

where 1~~1 i 1 are absorption parameters. 

The scattered wave is the difference 

(A SC ’ = \A. ’ - Ihfin’ = (1 - qin)\Ain> + Ck(qti - qk)ain kl-\>. (3.1) m . 

The first term in Eq. (3.1) describes elastic scattering whereas inelastic 

(i.e. , diffractive dissociation) is contained in the second one. One can see 

from Eq. (3.1) that the diffractive dissociation amplitude is proportional to 

the difference between the amplitudes for the absorption of produced particles 

and the incoming particle (Fig. 2). 

The experimental evidence that the cross sections for diffractive pro- 

duction processes (cd) are about one order of magnitude smaller than the 

elastic one (oeI) can be used. 
14 

to show that to first order in (od/uel) the 

scattering of a virtual component off the target can be approximated by scat - 

tering of real particles. 



-a- 

We shall now apply this formalism.to the case of nucleon dissociation 

NN + xNN. Neglecting first double scattering in the final state we have the 

diagrams shown in Fig. 3. Diagrams 3(a) and (b) have the same vertices but 

contain in general independent singularities in different channels S = (qb + qc)2 

andu=(q 
2 

b -9,) . However, in the high energy and small momentum trans - 

fer limit for the Reggeon, shown by the bubble in Fig. 3, q2 = -q,2. Then 

q0” 

s- 

= 9,” so that s = m 
2 

a - 2 qopaz 
2 15 

m a simultaneously U + mb2 

2 
+q , ii = mb2 - 2qoPbz’ f q2 and ai q2 

and the contributions of diagrams 3(a) 

- 0, 

and 

(b) cancel each other. It means that in the limit of high energies and small 

mass and momentum transfer the main contribution arises from diagram 3(c). 

Thus we come to DHD-model. 
16 

At first sight it seems that it is very naive to expect that the amplitude 

Reggeon + N -c ‘IT + N (entering the upper part of Fig. 1) can be adequately 

described at low Mx by only the pion pole. If one assumes the similarity with 

usual binary reactions then this approximation is definitely unreasonable at 

small S. 

But it is clear from the above discussion that neither in the physical 

picture of the reaction nor in the kinematics does one have full similarity for 

these reactions. 

At very high momentum, it becomes reasonable to consider the incoming 

hadron as a superposition of “almost free” components and the high energy 

kinematics stress the one important diagram. Experiment confirms the 

importance of this double peripheral diagram in diffractive dissociation. 

Now, let us calculate the contribution of diagram i. For further 



-9- 

references, we shall consider the general case when all particle masses are 

different. All necessary kinematical relations and definitions are given in the 

Appendix. 

The cross section for reaction NN - rrNN is 

do = (2n)-5s3-i (mim2M1M2) C IT,\ 
2 d3qid3q2d3q3 

qioq2oq30 

Choosing as independent variables the invariants s, t. s = M 2 
and 

X 

angles f3 and o between Fi and Ti in the system where GI + c3 = 0, we can 

rewrite Eq. (3.2) as 

da 
d5dt ded cos 0 = (+’ 

-4 mim2MiM2 q 

2s2 
r!To12. 

X 

(3.2) 

(3.3) 

The matrix element for Fig. 1 can be written in the following form: 

To = GrV(ti)D(t~)lCITIN(sI,t,fi)F(t,fl). (3.4) 

Here Gr is a rationalized and renormalized TNN-coupling constant Gr2/4, 

= 14.4. V is a spin part of the vertex, and 

spCin\v12 = - 
tl 

4miMi 
(3.5) 

The meson propagator D(tf) can be chosen either in elementary particle form 

Del($) = h2 - t,r* (3.6) 

or in the reggeized form 
17 

2 
DR 0,) = (3.7) 

where the TF trajectory is Q = (Y’ 
ll 

(t 
R 1 - P2). 
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(=S- t - Mi2 + (mi2 - Mi2 - t,NP2 - ti - t)/2ti 

and co is a scale factor. 

We shall use the following approximation for Eq. (3.7) 

DS2(ti) = De~(ti)expjj;ln~+j(ti -p2j. 

..-a 
We assume that the off-shell TN scattering amplitude MlrN can be 

approximated by on-shell amplitude M 
TN’ 

so that at large s and small t 

bTNt 
;qlCIiiN12 = e [utTN(s*bgdTj2, 

m2”2 
(3.8) 

where we neglect the small contribution of the real part of nN-scattering 

amplitude. (qp . is the momentum in the system where q2 - +T3 = 0.) Com- 

parison with experimental data [see, for example, Eq. (7a)] indicates that the 

amplitude must have some additional ti and t-dependence, which we choose 

here in the simplest form 

F(t,tl) = F1(tl)F2(t), with Fi(x) = exp (6i(x - p’)). 

Such extra ti and t-dependence turns out to be quite sizeable and is usually 

attributed to the off-shell effects. In Section IV, we shall give another inter - 

pretation of this dependence. 

Using Eqs. (3.4)-(3.8) we can write Eq. (3.3) as 

do -2 

dtdKd+d cos 0 = RI (-t,)(t, - m2) (q3pGi)2 exp (6(t, v2)l > (3.9) 

where 
-3 7 

Ri =2@f(+)kexp [(bhN + 6,)tJ $- 
X 



and hi for elementary TT 

6= 

hi + 2a;ln 
Mx2 - Mi2 

50 

for reggeized TF. 

At large energies we shall neglect the weak sf -dependence of onN. 

Then only [(q3p)2s,] in Eq. (3.9) depends upon 4. Integration over Q leads to 

the following form useful in the analysis of t -, Mx-, and tf. (Z a + b cos f3 ) - 

distributions 

do 2 -2 

dtdgd COS B 
= R1R2( -tl) (tl - P ) 

where 

R2 = :(A+ + B cos &J)(A- + Bcos 8) + gC2sin29. 

Further integration over 0 gives the missing mass cross section: 

d20 - = 2 [@(x-j - m(q)]. 
dt ds 1 

(3.10) 

(3.11) 

where 

@p(x) = e6x 
1 
:x - 3 + ‘+lzy - +-] + Ei(6x)[a+p2p+p2@6], 

6 

Ei(x) is the exponential integral function, x+ =a - p2 *b, and the kinematical 

variables a, b, a, p, and y are defined in the Appendix. 

The Mx and t-dependence of the cross section (3.11) has the gross 

features found in experiment: the bump in Mx near threshold (MN + p) and 

the rise of the slope parameter when Mx approaches threshold. 
18 

The extra 

tf -dependence due to Ff(tf) leads to suppression of the cross section 

especially at larger Mx and to a shift of the maximum in M -distribution to 
X 

smaller Mx (see Fig. 4). The reggeization has a similar effect with even 

stronger suppression of larger Mx. 

‘UP..’ “~ 
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As an example, we show in Fig. 5. the comparison of Eq. (3.11) with 

recent data on pp -. Xp and pd -. Xd diffractive dissociation. 7 IM ore details 

can be found in Ref. 7(a). ] 

If we suggest that the whole experimental peak near Mx - i .4 GeV is con- 

netted with p 
+ 

-tp+rOandp*n+r dissociation then we need 6f = 2( GeV/c) 
-2 

and Zi2 - 3( GeV/c) 
-2 

to have a reasonable absolute value and the peak position. 

Even with these large values of 6i and G2 the value of the’slope is still smaller 

than in the experiment. If we accept that there are other contributions in this 

Mx region, we need even stronger suppression of the absolute value. In the 

next section we show that t- and ti - dependence and suppression in the 

absolute value can be obtained from absorption. 

As far as the other contributions are concerned, we assume that at low 

Mx,they are connected with two-pion production (N - wN). For small values 

of Mx the two pion-nucleon channel can be described in this model through 

the channels : N e rrh and N -. cN where A is a 33 -isobar and c is a ‘scalar 

meson” which effectively takes into account the enhancement in two-pion 

system near threshold [diagrams (a) and (b) in Fig. 61. 

The corresponding contributions can be easily obtained from (3.4) noting 

the difference in couplings and in the spin structure of rNN and ANTT, uNN 

vertices. This leads to the substitution in (3.10) and (3.11): 

( “A “) 

a(x) - m,(x) = e &(I - %) + Ei(6x) ((3+ a6). 
6 

(3.12) 
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The effective coupling for the “A-case” can be calculated from the vN 

cross section (or the A-isobar width). For the “a-case”neither GtiN nor 

ocau is known experimentally. 

Both diagrams have nearly the same threshold and lead to similar M 
X 

and t-dependence, shown in Fig. 7. The characteristic feature of both dia- 

grams connected with scalar coupling is larger value the slope near the cor- 

responding threshold than for diagram with N + rrN dissociation. 

It is reasonable to assume that the missing-mass peak at Mx - 1.4 GeV 

is a superposition of those diagrams corresponding to N - rrN and N + mN 

dissociation. 

- 
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IV. ABSORPTION 

In the preceding section we considered the process (Fig. i) where an 

incoming nucleon interacts with the target by means of emission of a pion which 

in turn scatters diffractively on a target. 

Simultaneously with this “indirect” interaction, the nucleon must also 

interact “directly” with the target (waved lines in Fig. 8). 

It is well known that such absorption effects, connected with distortion 

of incoming and scattered waves, play an important role in binary reactions, 

leading to the substantial modification of the “unabsorbed” amplitudes. 

In this section we present a model for absorptive corrections to dif- 

fractive dissociation. 

We shall suggest that similarly to the binary reaction case (see, for 

example Ref. i9) absorption can be taken into account using the S-matrix of 

elastic scattering of particles in the initial (Si) and final (Sf) states: 

T(Tj) = Si’(<) To(;)Sf(pj). (4.1) 

Here To(Tj) is the unabsorbed amplitude of Section III in the impact param- 

eter representation 

To(<) = (277) ei5’T(k;) h2(i i;). 
~J’i .l 

(4.2) 

cj is the two-dimensional transverse (with respect to F1) component of mo- 

mentum cj and Tj is the two-dimensional impact parameter conjugate to the 

iq [W e work here in the overall center-of-mass system (F* + F2 = 0). ] 

The absorbed amplitude T (cj) can be found from Eq. (4.1) with the 

inverse transformation 



T(gj) = (2~7) T (Tj, .s2 (4.3) 

In general Sf describes rescattering of all particles in the final state 

In particular for Mx near a resonance, the resonance interaction between the 

produced particles may be important. Here, however, we are interested in 

a nonresonant mechanism giving rise to a bump. Therefore, we shall restrict 

our consideration here to the region near threshold Mf + TV where the reso- 

nance interaction presumably can be neglected. Since in the first approxi- 

mation (i.e. , in To) we have already taken into account the direct pion-target 

interaction, we are left with the nucleon-target interaction in the final state. 

In other words, we can consider the produced system as a quasiparticle which 

interacts with target as a nucleon so that 

si = Sf = sel, 

where 

is the S-matrix of elastic nucleon-nucleon scattering. However, the presence 

of the pion in the final state still affects absorption. The reason is that 

absorption depends upon helicities of particles. The relative motion of the 

produced particles generates “spin” of the quasiparticle. The higher Mx the 

more orbital states of the produced system with different helicities are 

important. 

Let T,” be an amplitude (corresponding to Fig. 1) which describes the 

production of particles 1 and 3 with helicity n along <f. We can define it as 

T;(i;) = & [ 
2rr . 

e-m’To($s k’, I 
0 
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where J1 is the angle between the planes Ti c3 and c2F1 (Fig. 9). 

It is clear that in our approximation only one impact parameter is 

relevant which we choose to be conjugate to k’, transverse component of q2 

f = z22 2 c 
sine2 = -t. (4.6) 

Then instead of Eq. (4.2) and (4.3) we can use 

and 

Tn(k) = 
1 

m 
pdp'+p)Sel(~) J,(pW (4.7) 

0 

Ton (p) = jmkdkTon(k) Jn(pk), 
0 

(4.8) 

where Jn(x) is the Bessel function. 

In the diffractive peak region the elastic nucleon-nucleon scattering 

amplitude can be parametrized as 

Tel(st) = (i+ a)oe 
bt/2 

, (4.9) 

where o is the total NN cross section and b is the slope parameter. LY is the 

ratio of the real to the imaginary-parts of the elastic NN scattering amplitude. 

At high energies it is experimentally small 
2i 

and will be neglected. From 

Eqs. (4.8) and (4.9) 

S,+P) = 1 -&e 
-p2/2b (4.10) 

Thus absorption leads, just as in the binary case, to suppression of low 

impact parameters. 

Substituting (4.8) into (4.9) and using form (4.10) for Sel(p) one obtains 

Tn(k) = T;(k) - STn( k), 

where 
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kf2b 
tb m 

-- 

6Tn(k) = $ exp z ( )I 0 
k’dk’ T:(k’)e 

2 
In(k’kb) (4.11) 

and In(x) is a Bessel function of complex argument. Using the expression for 

To from Section III and kinematical formulae given in the Appendix one can 

perform the integration in Eq. (4.11). These calculations and the detailed 

comparison with experiment will be given elsewhere. Here we restrict our - 

selves to qualitative discussion. 

First we note, that if the final-state scattering is known, the absorption 

will involve no free parameters (as is the case for reaction NN + vNN). 

Unfortunately, in diffractive dissociation the final-state particles Xi are 

usually unstable (p , K*, 
22 

A, and so) whose elastic scattering is unknown. 

Thus a simplifying assumption must be made (for example, that the final- 

state scattering is the same as the initial one). The other source of uncer - 

tainty is connected with inelastic absorption. From an experience with 

binary reactions it is known that the real abs,orption is stronger than follows 

from the elastic prescription. This fact is usually attributed to the contri- 

bution of diffractive inelastic scattering which effectively enlarges the re - 

scattering cross section. These effects usually are taken into account 

23 
phenomenologically by the change 

c7 el 
-c X0 el (A ’ I). 

The other effect of inelastic rescattering could be to change the effective 

slope b + cb. 

To make our qualitative discussion more transparent, we shall start 

from a simple model for the amplitude To. We choose instead of (u2 - fi) 
4 



an exponential form for the upper peripheral part of Fig. 1 so that 

TO 
= Ae 

$(Bt + Bitt) 

and we neglect t- and ti - dependence of A. 

The integration over $ in Eq. (4.5) involves only tl Noting that 

(4.12) 

ti = ri + r2 cos (J, (4.13) 

where 

2 2 
ri =m +M - 1 1 2q 1 ocPl oc 2qlcP1c e2” 

C 
+ cos cos A 

‘2 = 2qlcpicsine2csinxc 

one gets.from (4.5) and (4.12) 

T,” = Ae 
+U3t+Blrl) 

I, ($ Blr2). (4.14) 

(4.13’) 

Inbothlimits: t -O(d 2c - n) and M 
X 

+ ml + p (Xc + TI) the argument in 

(4.14) vanishes and 

In(+ Bir2) - 
(Blr2/‘Qn 

l?(n+l) (4.15) 

Let us first consider production of the system with NIX near the threshold 

One can then see immediately from Eq. (4.15) that only the nonflip amplitude 

(n = 0) is important. In this limit from Eq. (4.i3’)ri = t and 

To = Too = Ae 
$B+E$it 

(4.16) 

Substituting (4.16) into (4.11) we obtain the following expression for the 

absorbed amplitude (Mx near the threshold) 

T(t) = To(t) 4(t)> 

where 
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4(t) = u 
4rr(B + Bi + b) exP (4.17) 

If we fix Mx not too close to threshold, then for some limited range of 

t we can also fix ti. Then T(t, tt) = To(t,tl)#tlt2) and 

I7 
%Bi t B2+BBI -bBt 

4v(B+ Bt+b) exp 
-- -- 

2 2 B+Bi+b (4.17’) 

These expressions display the following important features of diffractive 

dissociation: 

(i) From Eqs; (4.14) and (4.15) we have a simple explanation for the 

experimental fact that for production of low-mass states near the threshold 

s-channel helicity is approximately conserved but for larger Mx is not. 

(ii) Absorption introduces extra t- (and ti -) dependence into the ampli- 

tude leading to a very steep differential cross section near threshold (Fig. 10). 

This dependence, as discussed in Section IV, is found necessary from a 

comparison with experiment and is usually attributed to the off-shell effects. 

In contract to the factorized t- and ti - dependence due to the form factors, 

Eq. (4.17) leads to coupled t- and tt- dependence. This can be used for 

experimental distinguishing of these forms. 

(iii) At some t ~= t* expression (4.17) vanishes, leading to a minimum in 

the low mass diffractive dissociation cross section. A rough estimation 

based on Eq. (4.17) with B = Bi = b = iO(GeV/c) 
-2 

and LT - 40 mb gives for 

t* value = 0,2(GeV/c)2 (Fig. 10). 

The contributions from n f 0 states fill in this minimum. These con- 

tributions become more important at larger Mx leading to disappearance of 
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the dip. The similar conclusion about a minimum at small Mx was obtained 

recently in Ref. 24 from a different approach. Experiment 
25 

seems to con- 

firm this prediction. 

(iv) One can also speculate that the factor O(t) may explain the cross - 

over in K”(xo) + Q”(co) diffractive dissociation (Fig. 6). At present it is 

difficult to say anything more definitive since the cross sections and slopes 

for K** - N scattering, are unknown as well as the effect of inelastic absorption. 

In order for the factor 4 to act in right directions we need to assume that 

the relation between o(K*N) and a(K 
+- 

N) cross sections is different from 

o(K+N) and a(K-N). The possibility for verification of the model can be 

obtained from the measurements .of the crossover in reactions 

PP - v+np ( v’pp) 

pp + v%p (rrOpp). 

If inelastic absorption is negligible (A = c = 1) the absorptive corrections 

can be expressed in terms of the known values of cross sections and slopes 

for pp and pp scattering. 

Now, let us consider production of the system with large Mx. We shall 

see that the dramatic strengthening of t-dependence of the amplitude due to 

absorption found near the threshold disappears as Mx increases. 

At large Mx one can neglect the t-dependence of r2 and using (4.15) 

integrate (4.17). Then 

tB2 
n u 

6T = 4rr(B+b) e 
(4.18) 

We see from (4.18) that the relative magnitude of the absorptive corrections 
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8Tn/Ton decreases with n due to the factor 
b n 

( 1 B.+ * It means that the con- 

tributions of higher n become more important in absorbed amplitude then in 

the unabsorbed. But, we knowfrom (4.15) that at small t Tn behaves as (a)“. 

Thus the change in the relative contribution of different helicity states caused 

by absorption leads to the flattening of t-dependence at large Mx. 

The importance of spin effects for diffractive dissociation was already dis - 

cussed in Ref. 26 from a general assumption of peripherality of diffractive processes. 

Recently on this base a phenomenological model was constructed 
24 

where the 

peripheral shape and strength of different n-states were chosen ad hoc. In our 

approach we have an explicit dynamical mechanism for both. 

Summing up Tn [inverse to (4.5)] and using (4.18) we obtain (for ti = 0) 

the full amplitude of the form T = To4, where 

;=i- 
4v(;+b) (4.19) 

Typically B = B1 and 4 is practically independent of t. Thus, comparing with 

(4.17), we obtain another important property of the model: 

(v) Absorption makes the slope of the amplitude increasing as Mx ap- 

proaches the threshold. 

It is clear that the properties found for the amplitude with exponential 

tt -dependence will also hold for the original form 

To = AeiBt(p2 - tl)-i. 

In this case instead of (4.14) we obtain 

Ton = Ae +Bt Q,(t) > 

where 

(4.14’) 
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4-i 
.i 

Fl;l‘ L.JW 

1 

n 

Qlct) = ~ 2* 
-r 1 2 

r2 

and; =p 
2 

1 
-r 

1 

Att-cOorM 
X 

em +p 
1 

r 
1’ 

r2 are functions oft: 

(4.15’) 

r 1 = II + e2t, r2 = afi. 

where 

Pi = p2 + 2qlocpioc 2 c c 2 2 - 

c 

rni2 
-Ml. +(2q20p20 -m2 -M2)cosAc 

12 
41 

= y- cos xc (4.20) 

42 

2P1y 
a= 

C 
sin xc. 

92 

Now we can integrate (4.11) using approximate form (4.15’), and the small-t 

limit for In(k’ kb) = (k’ kh/2Jn/n! 

The resulting expression for the amplitude Tn is 

Tn(t) = T * o /j -*eq(qt)yj. (4.22) 

where 

and 

The cross section can be calculated now as in Section III with 1 To 1 2 -c z ! Tn I‘. 
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APPENDIX 

We list here some kinematical variables for diagram Fig. 1. 

Metric 

P2 = p”, - s2 

Invariants 

s =w 2 = (PI + P2)2 t = (q2 - P212 

Ff =M 2 = (ql + q2j2 
X ti= (ql - P,? 

s4 = (q2 + q,12 T= (q2 - P,)2 

Symbols 

E(x, y. z) = (2/ (x +y - 2) 

P(x, y. z) = (2x)-* [x2- Zx(y + 2) +(y 2 112 -z) 1 

In the rest system of the fragments ($ + q3 = 0) one has 

and 

pi0 = E (M;> Mf> t) 

430 = E (M;, p2, ml’) 

qi0 = E (M;> ml2, p2) 

P20 
= E (Mx2, MZZ, 7) 

PI = P (Mx2> MI”, t) 

91 = q3 = P CM:, m,‘. P’) 

2 
p2 =P(Mx. Mzz>f) 

f 
2 2 =m +M +M 2 2 

2 I 2 -M -s-t 
X 
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Angles 

between ii, and i;, 
case = 2qpi 

L [2qioPio - ml2 - Mi2 + ti ] 

between c1 and c2 cosa = & [2piopzo + M; + M22 - s] 

between ?& and s2 COSE = COSQ c0se + sin0 sin0 cos$ 

One can express invariants si and ti in the system where qt + c3 = 0: 

s1 = A + BcosB+ C sin0 COST 

where 

A = s + mt2 - 2qio (plo + pzo) 

B = 2q (p, + p2 coscr) 

C = 2qp2 since 

tl = a + b cos e 

2 
a=m +M 

2 
1 1 - 2qiopio 

b = 2qp1 . 

and (q,‘)’ si =4 -1 
c 

(A+ + B case ) (A- + B cosu) + C sin4 

(A+ + A- + 2 B case) + C2 sin2 9 cos’b 1 
A*=A -(m2*p)2 

In our discussion of absorption we use the overall center-of-mass system 

c-d, + r;, = 0). Here 

C 

Pi0 = E (s, Mi2> 
2 

M2 ); p20c = E (s, Mz”> Mi2) 

pit =pZC=‘kC=P(s, Mi2, M22, 

C 

910 = E (s, mg2, s$); sic = P (s, mi2, sl) 

C 

920 
=E(s, m22, M$; q2’= P (s, m22, Mz) 
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Angles 

between Fit and Gi cos et” = - 
1 

[-t 
2 

+M 
2 

- 
2 kcqic 1 +m 1 1 2pio c9 7 10 

between $I and G2 COSMIC = 
1 

2 kCq2C 
t-t+T2+M22 -2P20c920cl 

between zi and q2 cosAc = 
1 
c c [ - s + M,” + si.- Cr2 +2qi0 20 cq cl 

2% 92 
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FIGURE CAPTIONS 

Fig. 1. DHD-type diagram. 

Fig. 2. Production amplitude in diffractive dissociation model. 

Fig. 3. Diagrams for NN -c lrNN dissociation. 

Fig, 4. Mass distribution and slope parameter from Eq. (3.11) for non- 

-2 
reggeized pion with hi = 1 and 2, 62 = 3 (GeV/c) , unN = 24 mb, and 

b rrN = (9 GeV/c)-2. 

Fig. 5. Comparison of Eq. (3.11) with data from Ref. 7. 

Fig. 6. DHD-type diagrams for dissociation NN + HAN, NN - cNN, and 

K”(Fo) -. Q”(Q”). 

Fig. 7. Mass distribution at t = -0.02(GeV/c)2 (arbitrary normalization) and 

slope parameter for diagrams 6. 

Fig. 8. Double peripheral amplitude with absorption 

Fig. 9. Kinematics in the center-of-mass system. 

Fig. 10. Absorptive factor aL(t). For comparison at small t the function 

0.53. exp( 5.6t) is shown. 
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